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Abstract—Language fuzzing is a bug-finding technique for
testing compilers and interpreters; its effectiveness depends upon
the ability to automatically generate valid programs in the
language under test. Despite the proven success of language
fuzzing, there is a severe lack of tool support for fuzzing
statically-typed languages with advanced type systems because
existing fuzzing techniques cannot effectively and automatically
generate well-typed programs that use sophisticated types. In
this work we describe how to automatically generate well-typed
programs that use sophisticated type systems by phrasing the
problem of well-typed program generation in terms of Constraint
Logic Programming (CLP). In addition, we describe how to
specifically target the typechecker implementation for testing,
unlike all existing work which ignores the typechecker. We focus
on typechecker precision bugs, soundness bugs, and consistency
bugs. We apply our techniques to Rust, a complex, industrial-
strength language with a sophisticated type system.

I. INTRODUCTION

The central idea of a language fuzzer is to automatically
generate valid programs in a given language, which are then
fed to a language implementation under test in order to check
for crashes or miscompilations. This idea is well-established
as a confidence-building and bug-finding technique for com-
pilers and interpreters; for example, thousands of bugs have
collectively been found by the jsfunfuzz [1], LangFuzz [2],
and CSmith [3] language fuzzers.

However, no existing language fuzzers target any statically-
typed languages with advanced type systems that include fea-
tures such as parametric or subtype polymorphism, generics,
pattern matching, type classes, etc—that is, languages such
as Java, C], ML, Haskell, Scala, Swift, and Rust. The reason
behind this lack of tool support is that current language fuzzing
techniques are unable to effectively and automatically generate
well-typed programs in such languages. Moreover, even for
languages with simple type systems that can be fuzzed using
current techniques, the typechecker is viewed merely as an
obstacle that must be overcome in order to test the rest of the
language implementation, rather than a component worthy of
being tested for its own sake. The typechecker is responsible
for enforcing guaranteed program behaviors such as memory
safety; the more complex a language’s type system is, the
more important it becomes that the typechecker itself is tested
for correctness. Current language fuzzing methods do not
address the necessary techniques and methodology for testing
a typechecker.

In this paper we advance the state of the art in language
fuzzing in several ways. First, we take advantage of the well-
known idea of propositions as types and programs as proofs [4]
(also known as the Curry-Howard Correspondance) in order
to phrase the problem of well-typed program generation as a
constraint satisfaction problem expressible in constraint logic
programming (CLP), e.g., Prolog [5], [6]. Because a type is

a logical proposition, we can straightforwardly encode types
and type systems using CLP. Because programs are proofs,
querying the CLP engine whether a type is “true” corresponds
to generating a well-typed program. The nondeterminism in-
herent in CLP languages means that when there are multiple
possible proofs (i.e., multiple well-typed programs) the CLP
engine can easily generate all possible solutions—that is, it can
output as many well-typed programs as we desire. This method
for automated program generation allows us to take advantage
of long-standing existing implementations of CLP [7], [8] and
community wisdom about effectively using CLP [9].

Our second advance describes techniques for specifically
testing typechecker implementations. The three main kinds of
typechecker bugs we target are (1) precision bugs, where the
typechecker conservatively rejects well-behaved programs it
should accept; (2) soundness bugs, where the typechecker op-
timistically accepts potentially ill-behaved programs it should
reject; and (3) consistency bugs, where the typechecker treats
a set of equivalent programs (in terms of being well- or ill-
typed) inconsistently, accepting some while rejecting others.

Testing for precision bugs requires only that we gener-
ate well-typed programs as described previously and then
determine whether the typechecker erroneously rejects them.
Testing for soundness bugs requires that we generate ill-
typed programs to see whether the typechecker erroneously
accepts them. However, merely generating arbitrarily ill-typed
programs is trivial and mostly ineffective; the trick is to
generate programs that are non-obviously ill-typed, i.e., ones
that could conceivably be accepted even by a typechecker
that has been carefully implemented and reviewed. In order to
accomplish this feat, we describe a principled and automatic
technique for generating “almost well-typed” programs that
builds on our previous CLP-based technique for generating
well-typed programs. Testing for consistency bugs requires that
we generate equivalence classes of programs that are all well-
typed or ill-typed in the same way and then determine whether
the typechecker accepts or rejects all of them similarly. We use
a set of simple code transformations in CLP that allow us to
generate such type-equivalent programs.

To demonstrate the practical utility of our techniques, we
apply them to testing the Rust language [10] typechecker
implementation. Rust is a statically-typed language with an
advanced type system that is being actively developed by
Mozilla. Rust’s type system serves as an excellent case study
of our techniques, as it is highly sophisticated, lacks a formal
specification, and is under constant modification. These prop-
erties are endemic to real, industry-strength languages, and
tackling them head-on allows us to push our own techniques
to their limits. While the lack of a formal type system spec-
ification prevents us from establishing ground truth regarding
what is well-typed, it serves to open a dialog with the language



developers regarding the implications of the type system and
typechecker implementation decisions they make. That is,
our work can be used to find oddities and problems with a
type system under development, and these issues can be fed
through the development cycle to allow for further type system
refinement as well as typechecker fixes. We have worked
closely with the Rust development team during this case study,
and our efforts have raised a number of questions that the Rust
developers have had to debate and think hard about in order
to decide what is and is not correct behavior.

Overall, we make the following contributions in this work:

• An approach for generating well-typed programs in
statically-typed languages with advanced type sys-
tems. (Section III)

• A technique for testing the precision of typechecker
implementations, based on the approach described
above. (Section IV-A)

• A technique for testing the soundness of typechecker
implementations, based on our notion of “almost well-
typed” programs. (Section IV-B)

• A technique for testing the consistency of type-
checker implementations, based on our notion of
“type-equivalent” programs. (Section IV-C)

• The application of all the above techniques towards
fuzzing the Rust language typechecker implementa-
tion, along with an evaluation and discussion of the
results. (Sections V and VI)

II. RELATED WORK

We discuss existing work relevant to language fuzzing.
None of the language fuzzers discussed below, even the
ones targeting statically-typed languages, attempt to test the
typechecker itself.

The most common approach to language fuzzing employs
stochastic grammars [11], which perform a random walk over
a context-free grammar according to some probability distri-
bution in order to generate syntactically valid programs. There
are many existing fuzzers based on this technique, including
jsfunfuzz [1], cross_fuzz [12], and arithfuzz [13].
The advantage of the stochastic grammar technique is that it
is both simple and language-agnostic, a property exploited by
LangFuzz [2] to test both JavaScript and PHP. The downside
is that this technique implicitly assumes that syntactic validity
is the only important property for test programs to have,
as program generation constraints are based solely on the
language grammar. The stochastic grammar approach is not
well-suited to statically-typed languages with non-trivial type
systems, as the probability of randomly generating well-typed
programs is typically extremely low.

There has been a significant amount of work that at-
tempts to adapt stochastic grammars to fuzz statically-typed
languages. One idea is to restructure the language gram-
mars to incorporate type system information directly into the
grammar and thus emit only well-typed terms, as seen in
McKeeman [11] and St-Amour et al. [14]. This approach
necessarily gives up on certain kinds of programs where the
type information is too complex to express in a grammar, to

the point where it is unable to express most valid programs
as the language and type system under test become more and
more complex. A second idea is to generate syntactically valid
programs and then filter out ill-typed programs post hoc, as
in Gligoric et al. [15]. The effectiveness of this approach
is dependent on the relative frequencies with which well-
typed and ill-typed programs are generated, and experience
has shown that the number of well-typed programs is usually
dwarfed by the number of ill-typed programs. A third idea is to
augment the stochastic grammar to integrate additional checks
and analyses, as done for CSmith [3]. This approach, however,
is very specific to the language under test and can be extremely
complex to implement and maintain. Overall, there are many
hurdles to overcome in order to make stochastic grammars emit
well-typed programs, as the technique fundamentally does not
concern itself with type information.

A simpler approach is to develop a program generation
strategy with a built-in knowledge of type systems, enabling
the direct generation of well-typed programs. For example,
both Eclat [16] and JCrasher [17] generate well-typed Java pro-
grams by design. However, these techniques are still problem-
atic from the standpoint of testing statically-typed languages
in general, as both generation strategies are highly specific
to testing Java code. Moreover, they are limited in several
ways. First, they must take in existing classes and inheritance
hierarchies as input and cannot generate new classes and inher-
itance hierarchies. Second, they are fundamentally incapable
of handling generics, parametric polymorphism, and higher-
order functions; these are inherent limitations of the underlying
technique. These restrictions are all side-effects of the way
in which generation proceeds, as the underlying generation
algorithm is specific to the subset of Java that was chosen
to be generated. Overall, while Eclat and JCrasher are capable
of generating well-typed programs, their generation algorithms
lack expressiveness and generality.

Fetscher et al. [18] discuss a more general approach for
well-typed program generation that can be applied to arbitrary
languages, though their focus is on testing semantic properties
of a formal language definition rather than fuzzing a language
implementation. The central idea is to model a language’s
type system using PLT Redex [19], and then apply a custom-
built constraint solver to generate programs which are well-
typed according to the given model. While this approach is
more general than Eclat [16] or JCrasher [17], it is subject
to technical problems which practically limit its usage to
simple type systems lacking advanced features like para-
metric polymorphism. In contrast, our CLP-based technique
reuses existing high-performance CLP engines (e.g., [7], [8]),
and can easily handle more advanced type system features.
Most importantly, we describe techniques to generate type-
equivalent programs and programs which are ill-typed in subtle
ways, whereas Fetscher et al. only describes the generation
of well-typed programs. Overall, our focus is on testing the
typechecker itself, whereas Fetscher et al. is concerned only
with getting programs past the typechecker.

Another general approach is seen in program synthesis
(e.g. [20], [21]), wherein programs with highly specific behav-
iors are automatically constructed, usually with the help of pre-
existing SMT solvers [22], [23]. While synthesis techniques
are certainly applicable to fuzzing statically-typed languages,



they tend to be prohibitively complex and computationally
expensive for this purpose. Synthesis problems often involve
many constraints from different domains, whereas most type
systems (e.g., those described in Pierce [24]) require only
relatively simple equality constraints. Moreover, typing rules
are often written in the style of inductive inference rules,
which SMT solvers cannot handle without some additional
translation [25]. Overall, the concern with fuzzing is to gen-
erate programs with relatively few constraints as quickly as
they can be tested, whereas with synthesis the interest is in
generating some program which satisfies some high complex-
ity constraints. While tens of seconds per program may be
considered acceptable or even fast for a synthesis problem
(e.g., [21]), this is impractically slow for fuzzing purposes.
As such, program synthesis is not a very applicable way to
view the fuzzing problem.

In our own prior work [26], we showed how to use
CLP to fuzz dynamically-typed languages with special focus
on JavaScript. The paper briefly mentions a very simple,
unsound type system for JavaScript designed to avoid common
runtime errors. In this work, we focus specifically on testing
typecheckers for statically-typed languages with advanced type
systems. While at a high level both that paper and this one use
CLP to fuzz languages, the focus and techniques of the two
papers are completely different.

Groce et al.’s “swarm testing” [27] describes a program
generation strategy that intentionally restricts itself to a subset
of language features in order to focus testing on that chosen
subset. For example, in a language with conditionals, loops,
and assignment, one may choose to generate programs con-
taining only loops and assignment in order to allow more in-
depth testing of those features and their interactions with each
other. While this technique theoretically gives up on finding
certain bugs (i.e., those that arise from the eliminated language
features), in practice it has been shown that swarm testing
ends up finding more bugs in a given timeframe than does
testing on the entire language at once. The reason why is that
generating programs which hammer on a particular language
feature or interaction between specific features becomes much
more likely in this restricted space, and bugs tend to involve
only a handful of features. Groce et al. have shown that this
technique works for fuzzing languages based on syntactic
features and for testing APIs. We extend this idea with our
CLP-based technique by developing specialized fuzzers which
individually target subsets of Rust’s type system, as described
in Section V-B.

Equivalence Modulo Inputs (EMI) is a compiler optimiza-
tion and code generation testing technique wherein programs
are generated which should behave in semantically identical
ways given identical inputs [28]. That work explores inserting
dead code into existing programs in order to generate “input-
equivalent” programs. In our work, we employ code trans-
lations that take a given program and derive other programs
which are “type-equivalent” (e.g., if the given program was
well/ill-typed, then the derived programs will also be well/ill-
typed for similar reasons). While the original EMI work is
focused on testing optimizations and code generation, our work
is specific to finding consistency bugs in typecheckers.

III. GENERATING WELL-TYPED PROGRAMS

In this section we describe how to phrase the problem of
well-typed program generation in terms of constraint logic
programming (CLP). We use as an example the problem
of generating well-typed programs in System F [29], the
polymorphically-typed lambda calculus. We use System F as
a relatively simple way to explain the general ideas behind
our approach. CLP is capable of expressing much more
complicated type systems as demonstrated by our application
of these ideas to Rust (Section V). No existing fuzzers can
handle even something as simple as System F because of its
higher-order functions and parametric polymorphism.

While CLP is a better solution for generating well-typed
programs for language fuzzing than any current method, it is
not a perfect solution. We conclude this section by describing
some of the pitfalls of CLP with respect to well-typed program
generation.

A. CLP for Program Generation

A well-known result in programming language theory
states that logical propositions correspond to types and pro-
grams correspond to proof terms. This relation is often called
the Curry-Howard Correspondence, after the logicians who
first observed it. Given a logical proposition A, we can use
the rules of logic to create a proof term M that encodes the
proof of A. The Curry-Howard Correspondence states that A
can be viewed as a type and M as a program of that type,
written M : A. Thus, we can use a logical theorem prover to
derive programs of a given type.

The space of possible provers we could use is vast. We
observe that typing rules are written as nondeterministic induc-
tive inference rules that operate over equality constraints. This
observation naturally leads to the use of Prolog-like [30], [31]
languages, which explicitly feature nondeterminism as well
as equality constraints (via unification). We can then easily
reuse existing tools (e.g., [7], [8]) because with Prolog-like
languages, the execution model has a very close correspon-
dence to common type system representations.

Throughout this paper we refer to Prolog-like languages as
CLP languages, where CLP generalizes logic programming to
integrate arithmetic constraint solvers [5], [6] (in fact, modern
Prolog implementations such as GNU Prolog [8] and SWI-
Prolog [7] are CLP languages in this sense). While typical type
systems do not need arithmetic constraints, they are useful for
more advanced type systems such as Rust’s [10], as detailed
in Section V-B.

B. Example: System F

The best way to explain how to use CLP for well-typed
program generation is by example. Here we demonstrate how
to use CLP to generate well-typed programs in System F,
the polymorphically-typed lambda calculus. The key points to
observe are that (1) the CLP specification closely mirrors the
formal type system definition, and (2) we use only the standard
features of CLP languages, which means that we can use off-
the-shelf CLP implementations to generate programs.

Figure 1 describes the syntax of System F. Types are
either type variables, function types, or polymorphic types.



τ ∈ Type ::= α | τ1 → τ2 | ∀α.τ
e ∈ Exp ::= x | λx :τ . e | e1 e2 | Λα . e | e τ

Fig. 1: Syntax for System F, where α is a type variable, ∀α.τ is a
polymorphic type, x is a program variable, Λα . e is a type abstraction
that creates an expression of polymorphic type, and e τ instantiates
a polymorphic expression to a specific type τ .

Γ, x : τ ` x : τ
VAR

Γ, x : τ1 ` e : τ2
Γ ` λx :τ1 . e : τ1 → τ2

ABS

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

APP

Γ ` e : τ
Γ ` Λα . e : ∀α.τ TABS

Γ ` e : ∀α.τ2
Γ ` e τ1 : τ2[α 7→ τ1]

TAPP

Fig. 2: Typing rules for System F, where Γ is a type environment
mapping variables to types and τ2[α 7→ τ1] substitutes the type τ1
for free occcurances of α in type τ2.

An expression is either a variable, a function abstraction, a
function application, a type abstraction, or a type application.
Type abstractions parameterize an expression by a type in the
same way that function abstractions parameterize an expression
by a value. Type application specializes an expression (the
body of a type abstraction) to a given type in the same way
that function application specializes an expression (the body
of a function abstraction) to a given value.

Figure 2 describes the typing rules for System F. The rules
use judgements of the form “Γ ` e : τ”. A judgement is a
statement “given type environment Γ that maps the variables
in scope to their types, the expression e has type τ”. Each rule
has a single judgement as its conclusion (on the bottom of the
horizontal line) and zero or more judgements as premises (on
the top of the horizontal line). A rule provides justification
for drawing the given conclusion only if we can prove the
truth of each premise. The first three rules (VAR, ABS, and
APP) are exactly the same as the simply-typed lambda calculus.
The last two rules handle polymorphism: TABS introduces a
polymorphic type and TAPP eliminates a polymorphic type.

Figure 3 shows a translation of the formal typing rules from
Figure 2 into CLP, using a Prolog-like syntax where lower-case
identifiers represent user-defined predicates and functions, cap-
italized identifiers represent variables, commas represent con-
junction, :- represents reverse implication, and periods signal
the end of a clause. All variables are implicitly quantified,
e.g., the clause foo(A,B) :- bar(A,C) actually represents
the clause ∀A,B.foo(A,B) :- ∃C.bar(A,C), which means
“given some A and B, we can derive foo(A,B) if we can
show there is some C such that bar(A,C)”.

typing(Gamma,var(X),T) :-
lookup(Gamma,X,T).

typing(Gamma,lam(X,T1,E),arrow(T1,T2)) :-
add(X,T1,Gamma,NewGamma),
typing(NewGamma,E,T2).

typing(Gamma,app(E1,E2),T2) :-
typing(Gamma,E1,arrow(T1,T2)),
typing(Gamma,E2,T1).

typing(Gamma,tlam(A,E),poly(A,T)) :-
typing(Gamma,E,T).

typing(Gamma,tapp(E,T1),T3) :-
typing(Gamma,E,poly(A,T2)),
subst(A,T1,T2,T3).

?- typing([],E,T), write(E), fail.

Fig. 3: CLP specification of System F, where lookup(), add(), and
subst() are helper predicates with the obvious functionality whose
definitions are not shown here. The final query will output an infinite
stream of well-typed System F programs.

The figure contains five clauses (one for each typing
rule in Figure 2) and a query, which represents what the
CLP engine should try to prove. The typing predicate
represents a type judgement: typing(Gamma,E,T) stands
for Γ ` e : τ . The head of a clause (the part before
the :- symbol) is the conclusion of the inference rule; the
body of a clause contains the premises of the inference
rule. The type environment Γ is represented using a list
associating variables with their types; we use the helper
predicate lookup(Gamma,X,T) to determine what type T is
associated with variable X in type environment Gamma, and the
helper predicate add(X,T,Gamma,NewGamma) to compute
a new type environment NewGamma copied from the original
type environment Gamma but associating variable X with type
T. We also use the helper predicate subst(A,T1,T2,T3)
to compute a new type T3 derived from T2 but with all
free instances of type variable A replaced with type T1, i.e.,
T3 = T2[A 7→ T1]. We omit the definitions of these helper
predicates from the figure for space reasons, but the entire code
listing is available in the supplementary materials1.

Consider the query at the bottom of Figure 3. Be-
cause variables are implicitly quantified, it actually represents
the query “∃E,T.typing([],E,T), write(E), fail”. In
other words, “prove there exists some expression E and type
T such that given the empty type environment [] expression E
has type T, then output the expression E, then fail”. In order
to satisfy the first conjunct, the CLP engine must construct
a satisfying expression and its type; the second conjunct is
a built-in side-effecting operation that outputs its argument;
the third conjunct will immediately fail. Because CLP is non-
deterministic, failure triggers backtracking—the engine will
backtrack to the last nondeterministic decision it made and
make a different one. This implies that the engine will find
a different expression E with some type T (assuming each
expression has at most one type), output it, then fail again.
This process will continue indefinitely, attempting to output
the infinite set of well-typed System F programs.

There is, however, a subtle problem with how programs in
System F are enumerated with this example. When performing
nondeterministic search over clauses, CLP engines employ a

1http://www.cs.ucsb.edu/∼kyledewey/ase15.zip



depth-first search strategy, executing alternatives in the order
they are presented. For this example, this means the CLP
engine will always choose to produce ever deeper lambda
abstractions, as opposed to employing some of the later rules.
This problem can be easily addressed by adding code to make
lambda abstraction and other alternatives fail under certain
conditions, causing the CLP engine to backtrack and choose a
different alternative. Different mechanisms of causing failure
correspond to different search strategies; for example, adding
a bound on the number of recursive calls made to typing
implements a bounded-exhaustive search, and adding proba-
bilistic failure amounts to performing a random search. More
details on alternate search strategies and their implementation
can be found in our prior work. [26]

C. Pitfalls of CLP

While there are substantial advantages to using CLP for
well-typed program generation, it does have certain problems
that make it an imperfect solution. We identify and describe
the two biggest problems we have encountered when using
CLP for this purpose.

Fundamental Performance Issues. Typing rules generally
assume that they are operating over complete programs and
are attempting to make a judgement whether that program is
well-typed, i.e., they are operating as acceptors rather than
generators. Ideally, when implemented in CLP any acceptor is
also a generator by default—given a predicate p that describes
terms with some desired property, p(t) operates as an acceptor
for a concrete term t while ∃x.p(x) operates as a generator that
will bind x to some satisfying concrete term. However, naively
translating typing rules into CLP can lead to performance
issues. For example, while the ordering of clauses in a conjunc-
tion is irrelevant from a strictly logical standpoint, in practice it
is significant. A poor ordering can lead to asymptotically worse
performance [32], or even nontermination [33]. We have also
found that it may be necessary to place bounds on types to
ensure termination, using techniques described at the end of
Section III-B.

Lack of Constructive Negation. CLP in general lacks the
ability to constructively negate a predicate. In other words, it
is not possible to have the CLP engine construct a term that
deliberately fails to satisfy a given predicate. Given a predicate
p, we can query ∃x.p(x) but we cannot query ∃x.¬p(x).
CLP languages often implement a notion called “negation by
failure”, but that is not constructive, i.e., it cannot construct
terms, only filter out unsatisfying terms [34], [35]. In order
to get the effect of constructively negating a predicate p, we
must create a new predicate p̄ that constructively describes the
negation of p. This new predicate will contain redundant code,
and the resulting specifications are longer and more confusing.
Attempts have been made to solve this problem (e.g., [36]),
but those solutions require specialized CLP implementations
and still require additional code and effort.

IV. FINDING TYPECHECKER BUGS

A language’s type system provides guarantees about pro-
gram behavior, i.e., it excludes behaviors that the language
developers have deemed “bad”. The type system is essentially a

logical theory by which the typechecker attempts to prove that
a program does not exhibit these bad behaviors. One can think
of the typechecker as a filter which allows through all programs
that it can guarantee are well-behaved, while forbidding all
programs that it cannot guarantee are well-behaved.

Because exactly determining which programs are well-
behaved or ill-behaved is provably undecidable, the type-
checker will conservatively reject some potentially well-
behaved programs; the fewer such programs it rejects, the more
precise the typechecker is. However, the typechecker should
never accept any program that is potentially ill-behaved; this
requirement is called soundness. In addition, the typechecker
should be consistent in its decisions to avoid programmer
confusion: similar programs from a typing perspective should
all be accepted or rejected similarly.

In this section we describe methods and techniques for
detecting bugs in a typechecker implementation. We focus
specifically on precision bugs, soundness bugs, and consis-
tency bugs, though at the end we also discuss a few other
kinds of bugs that we encounter as a side-effect of our main
focus. Determining what exactly constitutes a bug requires a
specification to compare against. A formal specification would
be best (for typecheckers, this would be a formal type system)
but is not always available, especially for a language under
rapid development. In the absence of a formal specification, we
rely on an informal notion of “developer intent”, gleaned from
discussions with the language developers themselves. When
we say “spec” below, we are referring to either the formal
or informal specification, whichever is available. We do not
consider the problem of determining whether the spec itself
is correct (e.g., proving the soundness of the type system),
though that is an interesting problem to tackle in the future.

A. Finding Precision Bugs

We wish to automatically generate programs that expose
precision bugs in the typechecker. We first need a definition
that tells us when a program exposes a precision bug:

Definition 1. 〈Precision Bug〉 A program exposes a type-
checker precision bug if the program is well-typed according
to the spec but the typechecker rejects the program.

Because the spec can be informally defined, it may be
uncertain whether the program is well-typed according to the
spec. Even if we can guarantee that the program is well-
behaved, the type system implemented by the typechecker may
not be able to prove that fact and in that case the program
should be rejected by the typechecker. However, we can give
a more specific condition under which the program should
probably have been accepted:

Corollary. A program exposes a precision bug if the type-
checker has computed information that implies the program is
well-typed, but rejects the program anyway.

For example, suppose that the typechecker can infer the
program is well-typed if it can prove some proposition q. It
has already proved proposition p, and it knows that p ⊃ q.
Thus, the typechecker should be able to derive q and declare
the program well-typed. However, if it ignores that information
and rejects the program then we say it has a precision bug.



typing(Gamma,app(E1,E2),T2) :-
typing(Gamma,E1,arrow(T1,T2)),
typing(Gamma,E2,T3),
\+ (T3 == T1).

Fig. 4: CLP specification of “almost well-typed” System F. The only
change is to the clause for the APP rule, the rest of the clauses are the
same as Figure 3 and are omitted here. The \+ operator is negation-
by-failure.

From these definitions, it suffices to generate well-typed
programs using the technique described in Section III, run
them through the typechecker, and see whether the typechecker
accepts them or not. If a program is rejected, then given a
formal spec we are guaranteed that we have exposed a bug.
Given an informal spec, we have exposed a case where either
there is a bug in the typechecker or the language developers
need to tweak their notion of well-typedness to refine the
informal spec.

B. Finding Soundness Bugs

We wish to automatically generate programs that expose
soundness bugs in the typechecker. We first need a definition
that tells us when a program exposes a soundness bug:

Definition 2. 〈Soundness Bug〉 A program exposes a type-
checker soundness bug if the program is not well-typed ac-
cording to the spec but the typechecker accepts it as valid.

Thus, in order to expose soundness bugs we must generate
ill-typed programs. In concept, this is trivial: simply generate
syntactically valid programs and filter out all those that are
well-typed (as the generated programs grow larger, the odds
of a syntactically well-formed program also being well-typed
tend to shrink exponentially). However, the resulting ill-typed
programs are generally obviously ill-typed, such that even a
buggy typechecker would probably be able to correctly reject
them. Intuitively, we want the ill-typed programs to be non-
obvious so that even a mostly-correct typechecker might still
trip up and incorrectly accept them.

For this purpose, we introduce the notion of “almost well-
typed” programs. The idea is simple: given a set of type system
rules, we pick a subset of the rules’ premises and negate them.
Any program that is well-typed according to the modified type
system is “almost well-typed” according to the original type
system—that is, the program is ill-typed, but in a precisely
controlled way. This notion is independent of the particular
type system that the typechecker implements, allows us to tune
the degree of ill-typedness at a fine granularity (by choosing
how many and which premises to negate), and is intended to
mirror likely mistakes that might be made when implementing
the typechecker (for example, forgetting to check a rule’s
premise or checking it incorrectly).

Example: Almost Well-Typed System F. We illustrate this
idea using the System F example from Section III. Consider
Figure 2, which gives the typing rules for System F. Suppose
that we decide to negate the second premise of the APP rule,
which says Γ ` e2 : τ1 (i.e., that the type of the argument
matches the type of the function’s parameter). Negating this

premise means ensuring that the type of the argument e2 is
not the type of the function parameter τ1. Figure 4 gives a
modified implementation of the APP rule using CLP, which
can be compared to the CLP implementation given in Figure 3.
The clause in Figure 4 is generating a type T3 for E2 and then
ensuring that T3 is not the same as T1. We would prefer to
use constructive negation to create a type T3 that is different
from T1 by construction, however as discussed in Section III-C
this is not possible in typical CLP languages. Thus, the almost
well-typed implementation must spell out to the CLP engine
what negation means in the context of each negated premise.

While this example requires that every function application
in the generated program is ill-typed, we can also specify that
only a certain number of function applications are ill-typed,
e.g., that there is exactly one ill-typed function application and
all the rest are well-typed. In general, for any “almost well-
typed” program generation we can specify how many times
each negated premise is used versus the original premise. We
accomplish this by adding a counter that counts the number
of times a negated premise is applied; if the counter exceeds
some bound then the negated premise cannot be used anymore
and the generator must use the original, non-negated premise.

C. Finding Consistency Bugs

We wish to automatically generate programs that expose
consistency bugs in the typechecker. We first need a definition
that tells us when two programs expose a consistency bug:

Definition 3. 〈Consistency Bug〉 Two programs together ex-
pose a typechecker consistency bug if (1) the well-typedness
(ill-typedness) of one implies the well-typedness (ill-typedness)
of the other; and (2) the typechecker accepts one program and
rejects the other.

To find consistency bugs according to this definition, we
need a method to generate “type-equivalent” programs—that
is, programs that satisfy point (1) in Definition 3. Generally,
type-equivalence is specific to the language under test. For
expository reasons, we provide a simple example to illustrate
the general idea. Consider the following program:
let x:τ = e1 in e2

Where τ is some type and e1 and e2 are arbitrary expressions.
The overall meaning of this program is to evaluate e1 down
to a value of type τ , assign the result to the variable x, and
then evaluate e2 with x in scope. With this simple setup, we
can automatically transform this program into the equivalent
one below:
let t:τ = e1 in (let x:τ = t in e2)

Which preserves the meaning and typedness (whether well-
typed or ill-typed) of the original program. If one of the
above programs is accepted by a typechecker and the other
is rejected, then the typechecker has a consistency bug.

In order to systematically check for consistency bugs,
we first generate well-typed and almost well-typed programs
according to the methods described in Sections IV-A and IV-B,
then apply a series of language-specific transformations on the
resulting programs to create type-equivalent sets of programs,
then run each type equivalence class of programs through the
typechecker to see whether they are all accepted or rejected.



D. Other Kinds of Bugs

While our main focus is on precision, soundness, and
consistency bugs, in the process of finding them we can
encounter other kinds of bugs as well. Two common kinds
of bugs that we may encounter are parser bugs and crash
bugs, as defined below.

Definition 4. 〈Parser Bug〉 A program exposes a parser bug
if it is syntactically well-formed according to the spec but the
parser rejects it.

Definition 5. 〈Crash Bug〉 A program exposes a crash bug if
it causes the compiler to crash when compiling it.

Not all bugs neatly fit into the aforementioned categories.
We call these miscellaneous bugs, as defined below:

Definition 6. 〈Miscellaneous Bug〉 A program exposes a bug
which is not clearly identifiable as a precision, soundness,
consistency, parser, or crash bug.

We do not do anything special to find these three additional
kinds of bugs, but merely make a note when our testing
encounters them.

V. TESTING THE RUST TYPECHECKER

In this section we describe Mozilla’s Rust language [10],
with particular attention to its type system, as well as a set of
program generators that we have implemented for the Rust
typechecker using the techniques described in Section IV.
Rust serves as an interesting case study for our techniques
because it is under active development and features a so-
phisticated but informally-defined type system. The lack of
formal specification means that we cannot establish ground
truth regarding typedness, but must instead establish a dialogue
with the Rust developers to evaluate the results of our testing.
This situation is common in large-scale, industrial-strength
language development, and our successful application of these
techniques to Rust demonstrates that they can handle such
languages. This work is the first to successfully generate
well-typed Rust programs and to systematically test the Rust
typechecker. All of the program generators described here are
available in the supplementary materials2.

A. Rust Background

Rust is intended to be a systems-level programming lan-
guage along the lines of C and C++, but with much greater
safety guarantees afforded by its type system. Rust supports tu-
ples, records, generics, parametric polymorphism, type classes,
associated types, linear types, and borrowing. We briefly de-
scribe some of the less common typing features: type classes,
associated types, linear types, and borrowing.

Type Classes. First introduced in Haskell, type classes [37]
provide a more principled way of allowing for ad-hoc type
polymorphism. A type class declares a set of polymorphic
function signatures that must be implemented by all members
of that class. Polymorphic type variables can then be con-
strained to require that they belong to a given type class. Type
classes are interesting from a well-typed program generation

2http://www.cs.ucsb.edu/∼kyledewey/ase15.zip

standpoint because determining well-typedness requires rea-
soning about type constraints arising from an intricate mixture
of syntactic and semantic features.

Associated Types. A useful feature seen in Standard ML,
C++, Haskell, and Rust, among others, is that of associated
types [38], [39], [40], which are intended to simplify poly-
morphic code. This feature allows auxiliary type variables
to be associated with some type τ , such that these auxiliary
variables are implicitly passed whenever τ is explicitly passed.
In practice, this feature can dramatically cut down on the
number of type variables which must explicitly be passed in
the code, greatly reducing boilerplate.

Linear Types. One of the most recognized features of Rust
is its use of linear types [41], [42] over memory regions [43].
Rust did not pioneer the use of linear types (see, e.g., [44],
[45] among others), but it is the first language to use them
that has substantial industry support. Rust uses linear types for
automated memory management without garbage collection or
reference counting. By default, all variables are linearly typed.
The key property that linear types enforce is that any linearly-
typed variable is used exactly once. Intuitively, a linearly-
typed variable’s value is a resource that is consumed when
that variable is used. If a linearly-typed variable goes out of
scope and its associated value has not been consumed, then
the underlying memory for that value can safely be reclaimed.
Consider the following ill-typed Rust code:

fn dup1<A,B>(a:A, b:B) -> (A,A) { (a,a) }

This code declares a polymorphic function dup1 with two
parameters a and b whose return type is a tuple with elements
the same type as parameter a. This code is ill-typed because
a is used twice in the body of the function to construct the
pair being returned. The following version is well-typed:

fn dup2<A,B>(a1:A, a2:A, b:B) -> (A,A) {
(a1,a2)

}

The values of parameters a1 and a2 are consumed to produce
the return value, while parameter b is unused and thus its value
is unconsumed. Therefore, b’s value will be automatically
reclaimed when dup2 returns.

Borrowing. Linear typing is severely restrictive in practice,
as shown in the previous dup1 example where it was not
possible to duplicate the parameter a. To alleviate this problem,
Rust relaxes linearity in a sound manner using references.
Intuitively, when the programmer creates a reference to a
value then that reference borrows the value for a clearly-
defined duration without consuming it. The borrow durations
are made explicit in the type system via lifetime variables,
which are associated with every reference and constrain how
long a reference is permitted to borrow a value. Consider the
following well-typed Rust program:

fn dupref<’a,A>(r: &’a A) -> (&’a A, &’a A) {
(r, r)

}

fn calldup<A>(a: A) {
let r = &a;
let (d1, d2) = dupref(r);

}



Where ’a is a lifetime variable. The dupref parameter r
is a reference to a type A with lifetime ’a. Unlike the data
referenced, the reference itself can be treated nonlinearly, as
shown by the return value which uses r twice to construct
a tuple. Lifetime variables are created automatically by the
compiler, as shown in calldup which creates the initial
reference to a. The typechecker is responsible for verifying
that reference lifetimes are properly observed to avoid memory
safety violations.

B. Rust Program Generators

Rather than create a single program generator that attempts
to encompass all of Rust at once, we create separate generators
which focus in on different parts of Rust’s type system, much
in the same spirit as that of Groce et al. [27]. These generators
are overall much more complex than the example shown in
Section III-B, with each spanning several hundred lines of
code. As such, due to space constraints, we generally can
only describe from a high level what these generators do.
We encourage readers to consult our supplementary materials3,
which contain complete code for all the generators.

Generator G1. This generator creates programs with well-
typed first-order functions and function bodies. This generator
handles memory regions, lifetime variables, first-order function
calls, loops, variables, conditionals, and references. Because
lifetime variables model the duration under which a reference
is valid, we treat them as symbolic integers. This representation
is amenable to CLP’s built-in arithmetic constraint solvers.
Overall, this feature set represents the very heart of Rust and
typical programs would use this portion most frequently. This
generator demonstrates CLP’s capability to handle the core fea-
tures of Rust’s type system. Unfortunately, G1 is occasionally
less precise than Rust’s typechecker in ways which are difficult
to address without augmenting G1 with a dataflow analysis. As
such, we did not experiment with generating nearly well-typed
programs from G1, as such programs may still be well-typed
in Rust thanks to additional information G1 does not track.

Generator G2W. This generator creates programs with well-
typed records, type classes, and type class implementations.
This generator internally implements a simple, specialized
constraint solver over type constraints, which mirrors a similar
constraint solver in Rust’s typechecker implementation [46]. A
sanitized snippet from our constraint solver implementation is
shown in Figure 5, which has been stripped of code related to
bounded-exhaustive search and has undergone some variable
and procedure renaming. Overall, CLP is highly amenable to
this approach of implementing custom constraint solvers, a fact
which has been noted elsewhere [47].

Generator G2I. We used our technique for “almost well-
typed” program generation (see Section IV-B) and modified
the G2W generator to create ill-typed programs for the same
subset of Rust. This was achieved by nondeterministically
skipping calls to the constraintHolds procedure shown
in Figure 5, leading to the introduction of constraints with
unverified validity. Because a constraint may still hold by
chance, an additional check was performed at the end of
generation to ensure that the program was not accidentally
well-typed, much like the check performed in Figure 4.

3http://www.cs.ucsb.edu/∼kyledewey/ase15.zip

constraintHolds(
State1, LifetimeCons, FinalState) :-

LifetimeCons =
lifetimeCons(Lifetime1, Lifetime2),

lifetimeInScope(State1, Lifetime1),
lifetimeInScope(State1, Lifetime2),
ensureLivesAtLeast(Lifetime1, Lifetime2),
addAssumption(
State1, LifetimeCons, FinalState).

constraintHolds(
State1, TypeLifetimeCons, FinalState) :-

TypeLifetimeCons =
typeLifetimeCons(Type, Lifetime),

lifetimeInScope(State1, Lifetime),
inhabitedType(State1, Type, State2),
addAssumption(
State2, TypeLifetimeCons, State3),

handleImpliedLifetimeConstraints(
State3, Type, Lifetime, FinalState).

Fig. 5: Snippet of sanitized code handling two of the three possible
Rust type constraints we consider, which is used as a constraint
solver. The first case of constraintHolds handles the Rust
constraint ’lt1 : ’lt2, meaning the lifetime ’lt1 lives at least
as long as the lifetime ’lt2. The second case handles the constraint
Type : ’lt, meaning the type Type lives at least as long as
the lifetime ’lt. Descriptions of select data involved and called
procedures is provided inline below.

State Holds everything in scope, including lifetime variables,
type variables, typeclasses, typeclass implementations, and previous
typing assumptions made. Different actions manipulate the state,
resulting in new states.

lifetimeInScope(S,L) succeeds if the lifetime variable L is
in scope with respect to state S.

ensureLivesAtLeast(L1,L2) succeeds if lifetime L1 lives at
least as long as L2, potentially adding a CLP arithmetic constraint
roughly of the form L1 ≤ L2, where smaller values represent
longer-living lifetimes.

addAssumption(S1,C,S2) records that the constraint C has
been assumed to be true. C is added to state S1 to yield state S2.

inhabitedType(S1,T,S2) succeeds if the type T is
inhabited under state S1, yielding state S2. Depending on T,
constraintHolds may end up being called in a mutually
recursive fashion, as determining if an arbitrary type is inhabited
in Rust entails checking constraints on types. New information can
result from these recursive calls, hence the need for state S2.

handleImpliedLifetimeConstraints(S1,T,L,S2)
records any information implied by the fact that the type T has been
shown to live at least as long as lifetime L. For example, if T is
&’a Foo and L is ’b, then we also know that Foo : ’a and ’a
: ’b. New information is added to state S1, yielding state S2.

Generator G3. This generator also creates programs with
records, type classes, and type class implementations, but in
a much less constrained way than generator G2. It handles
a larger subset of Rust, including associated types, but does
not guarantee that the generated programs are well-typed and
neither does it guarantee that they are “almost well-typed”;
instead, we use the techniques described in Section IV-C to
create type-equivalence classes of programs. The purpose of
this generator is to find consistency bugs, and so it doesn’t
matter whether the programs are well-typed or not—only that
the typechecker treats them consistently. Our program transfor-
mations to create type-equivalent programs mainly move the



placement of explicit type constraints in the generated code
such that the movement should have no effect on typedness—
the concept is analogous to replacing A ∧ B with B ∧ A.
While there is overlap between this generator and others, G3
is specifically targeted to find consistency bugs with high
likelihood.

Generator G4W. This generator is similar to G2W but the
internal constraint solver is even more precise, enabling the
generator to recognize more programs as being well-typed.
This internal constraint solver takes more implied type in-
formation into account than in G2W, and is generally even
more precise than the constraint solver implemented in the
Rust typechecker. This serves to point out places where the
Rust typechecker needlessly loses precision. This is actually a
defective early prototype of G2W, and bugs found by G4W were
used to help inform how Rust’s typechecker works. Because
the behavior of G4W intentionally differs from Rust, it quickly
finds many possibly duplicate bugs, necessitating triage. As a
result, there are potentially more issues to be found with G4W
than what we report.

Generator G4I. We used our technique for “almost well-
typed” program generation (see Section IV-B) and modified the
G4W generator to create ill-typed programs for the same subset
of Rust. This was done in the exact same way as with the
creation of G2I, by nondeterministically skipping calls to the
constraintHolds procedure. As with G4W, this quickly
finds many issues, and so this generator may have actually
found more distinct issues than what we report.

VI. EVALUATION

We evaluate our techniques for typechecker fuzzing by
implementing the program generators described in Section V
and applying them to test the Rust language implementation.
Through this process we have uncovered 18 bugs according
to the definitions given in Section IV: 12 that have been
acknowledged by the Rust developers, 2 that the developers
are still considering, and 4 that the developers do not wish to
consider as bugs. We report the issues we uncovered that the
developers have decided not to treat as bugs because (1) they
are still bugs according to our definitions; and (2) uncovering
these issues often led to in-depth discussion and debate by the
developers before deciding that they were not bugs—as such,
the questions raised by these issues were useful for tweaking
the informal spec even if they did not result in fixes to the
language.

A. Experimental Details

Rust is under active development, thus for our experiments
we fixed on testing version 1.0-alpha, which was the most
recent version circa the start date of this work. In order
to carry out our testing, we implemented a custom SMP
parallel fuzzing tool written in a combination of Scala [48]
and Rust itself. The Rust portion takes advantage of the fact
that Rust compiler internals are exported as a library, allowing
us to repeatedly call specifically into the Rust typechecker
without incurring the overhead of repeatedly loading in the
Rust compiler as a process. Across the entire tool, disk IO
occurs only to write out newly discovered bugs; all other
interprocess communication occurs through UNIX pipes. Our

testing infrastructure and the program generators that we
evaluated are all available in the supplementary materials4.

We dynamically ensure that duplicate crash bugs are unique
using the techniques described in Chen et al. [49]. Automati-
cally detecting duplicate typechecker bugs is an open problem;
we did so manually for these experiments, and retroactively
modify the generators to avoid repeatedly hitting the same
bug where possible. Over a period of over 600 machine-hours
we tested nearly 900 million generated programs. In terms
of performance, the testing of generated programs turns out
to be the bottleneck rather than program generation itself: a
single program generation process was always able to outpace
the testing of the resulting programs (often by orders of
magnitude) even when the testing was carried out in parallel
threads on a 36-core machine. For example, the G2W fuzzer
generates approximately 138k programs per minute, though
we can only test approximately 28k per minute on a 12
core machine. Moreover, the test harness has been heavily
optimized, whereas the generators are fairly naive.

B. Reported Bugs

Table I lists the bugs that we uncovered during testing. For
each bug we report which program generator was used to find
it, its status (whether the developers have confirmed it as a
bug, decided it is not a bug, or have yet to make an explicit
determination), and give a brief description of the bug. We
discuss the causes and implications of a select few of these
bugs below.

Optimistic Treatment of Unsound Expressions. Rust allows
for modular code definitions, which impacts typechecking of
type classes. Specifically, when type class implementations
are separate from type class declarations, there is an issue
determining whether or not a given type class implementa-
tion properly implements its supposed type class. Concretely,
suppose that the programmer adds a constraint that type bool
(a built-in primitive type) must implement some user-defined
type class TC. The actual implementation of TC for bool
may not be present in the code being compiled (for example,
if that code is a library which will be linked in to other code
downstream). This fact raises an ambiguity with respect to
the meaning of the constraint, which could be (1) bool must
immediately implement TC in currently available code, or (2)
bool must eventually implement TC, including in code that
is not yet available. Experimentally using our tests we have
determined that the Rust typechecker takes the latter approach,
which is not consistent with the expected behavior from certain
bug reports [60], and ultimately leads to bugs 9 and 11 in
Table I. We label this issue as a soundness bug because the
typechecker can optimistically accept unsound code in the vain
hope that it will eventually get enough information to prove
that the code is sound. The result is that, for example, library
code can compile properly, but if a user ever links to that
library and attempts to use the unsound code, the compiler will
unexpectedly reject their code with a very opaque and useless
error message. The underlying problem is currently being
addressed [52], and ultimately a breaking language change will
result.

4http://www.cs.ucsb.edu/∼kyledewey/ase15.zip



TABLE I: Summary of reported issues and bugs. “Confirmed?” is 3 (developers confirm as a bug), 7 (developers decided it’s not a bug).
References to Rust language Github issues are provided where possible.

Bug ID Kind Generator Confirmed? Brief Description
1 Precision G1 7 The type system discards some information around blocks, leading to

the rejection of well-behaved programs.
2 Precision G1 7 The type system conservatively considers it possible for two references

which point to incompatible types to assign into each other.
3 Precision G1 7 Forcing lifetime variables to be equivalent triggers precision loss.
4 Precision G1 7 In general, it is not possible to refactor code so that an expression is

replaced by a call to a function that performs the same operation as
the original expression.

5 Precision G2W 3 The compiler rejects a program saying that an additional, but irrelevant,
constraint is needed.

6 Precision G2W 3 Constraints of the form typ : ... behave in fundamentally differ-
ent ways depending on whether or not typ is a type variable.

7 Precision G2W 3 [50] Programs which fail to use all lifetime and type variables available in
certain syntactic positions are rejected, ultimately to make implemen-
tation simpler.

8 Precision G4W 3 [51] The compiler discards implied information in the context of type-
classes.

9 Soundness G2I 3 [52] The typechecker does not check that the type we implement a typeclass
for can actually exist.

10 Soundness G2I 3 [53] Constraints over lifetime or type variables are discarded if they are
unused in certain syntactic positions.

11 Soundness G4I 3 The solving of type constraints on typeclass implementations which
check that a given type implements a given typeclass are delayed until
a typeclass is used.

12 Consistency G3 3 [54] Syntactically duplicating a constraint on a type variable in the type
variable position is considered a type error, when logically this is the
same as saying A ∧A

13 Consistency G3 3 [55] If two constraints on a type variable in the type variable position refer
to the same typeclass with different type parameters, the compiler
incorrectly reports the are syntactically identical.

14 Parser G1 3 [56] Fails to parse “box ()”, which should heap-allocate the unit (())
value

15 Crash G2W 3 [57] The solving of constraints involving lifetime parameters are delayed
until after they are needed, resulting in internal inconsistencies.

16 Crash G3 3 [58] A crash occurs if a type constraint on a typeclass attempts to refer to
its own associated type.

17 Miscellaneous G1 3 [59] Untouched contents of a struct can impact typechecking.
18 Miscellaneous G1 3 Lifetime variables do not correspond directly to memory regions [43].

Lack of Modus Ponens. Because types are propositions, it
is possible to use the existence of a type to infer further type
constraints using the rules of logic. That is, if we know p
and we know p ⊃ q then we can logically infer q; this is
the well-known rule of modus ponens. However, it turns out
that Rust does not always apply this rule during typechecking,
leading to imprecision and unintuitive behavior. For example,
when checking whether a type class is properly implemented,
the Rust typechecker inconsistently applies modus ponens
when checking type constraints, leading to bugs 6 and 8 in
Table I. The developers acknowledge that this problem is a
fundamental issue, and there are plans to address it [51], [52].

Inconsistent Handling of Type Constraints. Rust allows
explicit type constraints to be placed on various language
features (e.g., a function definition). To improve flexibility and
readability [61], the programmer can place these constraints
in either of two syntactic positions. Logically, the syntactic
placement of the constraint should have no bearing on its

meaning—however, our testing revealed that constraints in
different syntactic positions are handled inconsistently (see
bugs 12 and 13 in Table I). The Rust developers have since
fixed the underlying problem.

VII. CONCLUSION

We have proposed a general technique for using CLP
to fuzz typechecker implementations of statically-typed lan-
guages with advanced type systems. We generate well-typed
programs with this technique, which is a major accomplish-
ment in and of itself; we also describe a set of novel techniques
to target precision, soundness, and consistency bugs in the
typechecker. We have applied this technique to fuzz the type-
checker of Rust, a complex, real-world language. Through this
process we have identified 18 bugs in the Rust typechecker.
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